219 research outputs found

    Active Attack on User Load Achieving Pilot Design in Massive MIMO Networks

    Get PDF
    In this paper, we propose an active attacking strategy on a massive multiple-input multiple-output (MIMO) network, where the pilot sequences are obtained using the user load-achieving pilot sequence design. The user load-achieving design ensures that the signal-to-interference-plus-noise ratio (SINR) requirements of all the users in the massive MIMO networks are guaranteed even in the presence of pilot contamination. However, this design has some vulnerabilities, such as one known pilot sequence and the correlation among the pilot sequences, that may be exploited by active attackers. In this work, we first identify the potential vulnerabilities in the user load-achieving pilot sequence design and then, accordingly, develop an active attacking strategy on the network. In the proposed attacking strategy, the active attackers transmit known pilot sequences in the uplink training and artificial noise in the downlink data transmission. Our examination demonstrates that the per-cell user load region is significantly reduced by the proposed attacking strategy. As a result of the reduced per-cell user load region, the SINR requirements of all the users are no longer guaranteed in the presence of the active attackers. Specifically, for the worst affected users the SINR requirements may not be ensured even with infinite antennas at the base station.Comment: Accepted in IEEE GlobeCOM 201

    Covert Communication in Fading Channels under Channel Uncertainty

    Get PDF
    A covert communication system under block fading channels is considered where users experience uncertainty about their channel knowledge. The transmitter seeks to hide the covert communication to a private user by exploiting a legitimate public communication link while the warden tries to detect this covert communication by using a radiometer. We derive the exact expression for the radiometers optimal threshold which determines the performance limit of the wardens detector. Furthermore for given transmission outage constraints the achievable rates for legitimate and covert users are analyzed while maintaining a specific level of covertness. Our numerical results illustrate how the achievable performance is affected by the channel uncertainty and required level of covertness.Comment: to appear in IEEE VTC2017-Sprin

    On Channel Reciprocity to Activate Uplink Channel Training for Downlink Wireless Transmission in Tactile Internet Applications

    Full text link
    We determine, for the first time, the requirement on channel reciprocity to activate uplink channel training, instead of downlink channel training, to achieve a higher data rate for the downlink transmission from a multi-antenna base station to a single-antenna user. We first derive novel closed-form expressions for the lower bounds on the data rates achieved by the two channel training strategies by considering the impact of finite blocklength. The performance comparison result of these two strategies is determined by the amount of channel reciprocity that is utilized in the uplink channel training. We then derive an approximated expression for the minimum channel reciprocity that enables the uplink channel training to outperform the downlink channel training. Through numerical results, we demonstrate that this minimum channel reciprocity decreases as the blocklength decreases or the number of transmit antennas increases, which shows the necessity and benefits of activating the uplink channel training for short-packet communications with multiple transmit antennas. This work provides pivotal and unprecedented guidelines on choosing channel training strategies and channel reciprocity calibrations, offering valuable insights into latency reduction in the Tactile Internet applications.Comment: 6 pages, 3 figures, Submitted to IEEE ICC 2018 Worksho

    Covert Wireless Communication with a Poisson Field of Interferers

    Get PDF
    In this paper, we study covert communication in wireless networks consisting of a transmitter, Alice, an intended receiver, Bob, a warden, Willie, and a Poisson field of interferers. Bob and Willie are subject to uncertain shot noise due to the ambient signals from interferers in the network. With the aid of stochastic geometry, we analyze the throughput of the covert communication between Alice and Bob subject to given requirements on the covertness against Willie and the reliability of decoding at Bob. We consider non-fading and fading channels. We analytically obtain interesting findings on the impacts of the density and the transmit power of the concurrent interferers on the covert throughput. That is, the density and the transmit power of the interferers have no impact on the covert throughput as long as the network stays in the interference-limited regime, for both the non-fading and the fading cases. When the interference is sufficiently small and comparable with the receiver noise, the covert throughput increases as the density or the transmit power of the concurrent interferers increases
    • …
    corecore